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1. Mathematical Background

Different types of measures are used
in the field of information theory. Since
the pioneer work published in [8] and
[15], the literature on information mea-
sures has expanded and many diversity
and divergence indices (related to en-
tropy) are described by several authors
(see, e. g.,[5, 11, 12, 14]). Other authors
have recently discussed the application
of information gain methods to quanti-
tative epidemiology and survival analy-
sis [4, 9]. In fact, the entropy of random
variables is an interesting tool for cha-
racterising uncertainty associated with
these variables.

For a random variable X on a coun-
table set Ω, the entropy of X is

H (X) = – ∑ P (X = x) ln P (X = x), (1)
x ∈ �

where � is the set of all possible
values for X and (P (X = x), x ∈ �) is its
probability distribution.

If we now consider two random va-
riables X and Y on �, the entropy of X
conditional on Y is defined as follows:

H (X |Y) =
–∑ P (X = x, Y = y) ln P (X = x |Y = y)(2)
(x, y) ∈ A � B

where P (X = x | Y = y) is the conditional
probability of the event X = x given Y = y;
B is the set of all possible values for Y.

H (X | Y) represents the average un-
certainty on X when Y is known.

The notion of entropy seen above
cannot be directly extended to non-
countable sets (see [16] for the formal
link between Shannon entropy [17] and
Kullback entropy [8] and their respec-
tive properties).

Let � be a measure [2] on �, the
generalized entropy with respect to this
reference measure � ([2, 16]) is defined as:

H (X; �) = – �Aƒ (x) ln ƒ (x) � (dx);

where ƒ is the probability density of X
with respect to �. If X is singular with
respect to �, we set H (X; �) = �. It is
worth noticing that if we consider the
generalized entropy of the approxima-
ting discrete random variable Xn with
respect to the corresponding discrete
approximation �n to the reference
measure �, then H (X; �) is the limit
of the sequence of discrete approxima-
tions H (Xn; �n ).

Let X1, …, Xn be n random variables,
we can write  X = (X1, …, Xn ) and derive
from the previous formulas the entropy
of vector X. In particular, the entropy of
a pair of random variables (X, Y) is

H (X, Y) =
–∑ P (X = x, Y = y) ln P (X = x, Y = y).

(x,y) ∈ A � B (3)

The mutual information between X
and Y is by definition

I (X, Y) =
H (X)+H (Y)–H (X, Y) = H (X)–H (X|Y) (4)

It can be easily checked that 
0 � I (X, Y) � H (X), I (X, X) = H (X)
and I (X, Y) = I (Y, X). On the other
hand, I (X, Y) = 0 if and only if X and Y
are independent. I (X, Y) measures the
average reduction in uncertainty about
X by knowing Y and vice versa. There-
fore, if Y is the variable of interest, for
example the patient survival time after
disease detection, and X a medical co-
variable, the relative information of X
on Y defined as

I (X, Y)
Ir (X, Y) = –––––––– (5)

H (Y)

is a nonlinear correlation coefficient 
taking values in [0, 1]. Ir (X, Y) is the
proportion of reduction in uncertainty
about Y by knowing X.
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2. Entropy Decomposition

We consider Y as the variable of
interest, and X1,…, Xn its covariables
(with n >1). Following the definition of
mutual information between Y and X1,
we can define the mutual information
between Y and X1 conditionally to a
third variable, say X2:

I (Y, X1 | X2 ) = H (Y | X2) + H (X1 | X2) –
H ((Y, X1) | X2) (6)

= H (Y | X2) – H (Y | X1, X2).

I (Y, X1 | X2) is the average reduction
in uncertainty about Y when knowing
both X1 and X2 instead of X2 only.

We will now  show how the entropy
of Y can be decomposed by means of
the mutual information between Y and
the Xi.

Proposition 1 (Entropy Decomposi-
tion). The entropy of Y can be decom-
posed as follows:

n 

H (Y) = ∑ I (Y, Xi)
i = 1

n 

+ ∑ (I ((X1, …, Xi–1), Xi | Y) (7)
i = 2

– I ((X1, …, Xi–1), Xi))
+ H (Y | (X1, …, Xn)).

This proposition is proved by induc-
tion on n in [9].

Expression (7) provides an entropy
decomposition which parallels the square
sum decomposition of the variance ana-
lysis. H (Y | (X1, …, Xn)) can be consi-
dered as a residual term which is close
to zero when the Xi carry out most of
the information on Y.

When we  have no reasonable para-
metric models with respect to the ob-
served phenomena (i. e., variable of 
interest Y and X1, …, Xn), a nonpara-
metric  approach is possible from the 
information provided by contingency 
tables associated with the observations
in a similar  way as the one used by [13]
and [14].

3. Covariable Selection

We use a method based on the esti-
mation of the conditional and noncon-
ditional entropies of Y and covariables

X1, …, Xn. The estimates are calculated
by means of the empirical frequen-
cies provided by the multidimensional
contingency tables. For covariables
having a continuous distribution, the
outcomes are grouped into discrete
categories by applying an entropy con-
centration principle [16]. A data-depen-
dent estimator for the mutual informa-
tion can be obtained by means of a
nested sequence of partitions made of
rectangles as in [3].

Let Y be the variable of interest, X
be any covariable, (Nij ) be the contin-
gency table associated with Y and X,
and p = (pij ) be the matrix of expected
relative frequencies. pi. and p.j refer to
the marginal probabilities. The method
of selection consists of quantifying the
relationship between X and Y by using
the relative information of X on Y since
Ir (X, Y) is the proportion of reduction
in uncertainty about Y by knowing X.
The observation of X and Y through a
contingency table leads to the following
property which is a consequence of
equalities (1) and (5):

Property 1 An expression of the re-
lative information of X on Y is:

pij∑ pij ln ––––
i, j                 

pi.p.j

Ir (X, Y) = ––––––––––– (8)
∑ p.j ln p.j
j

We then deduce the following prop-
erty:

Property 2 An estimator of the rela-
tive information of X on Y is:

Pij∑ pij ln –––––
i, j pi.p.j

T = Ir (X, Y) = ––––––––––––––– (9)
∑ p.j ln p.j

where pij, pi. and p.j are classical nota-
tions used for the empirical relative fre-
quencies.

This estimator is convergent and fol-
lows asymptotically the Gaussian distri-
bution

N (Ir (X, Y), var (T))

where var (T) is the asymptotic variance
of T. Its expression is

1                         ∂Ir (X, Y)var (T) = –– var (∑ –––––– (p) Iij) (10)
N

i, j       
∂pij

where N = ∑
ij

Nij is the number of
statistical units considered, and the
Iij are the indicator functions associated
with the contingency table of (Nij).
The convergence considered above is as
N becomes larger. Using equalities (8)
and (10), we get the following property:

Property 3 An expression of the
asymptotic variance of estimator T is:

1 1 pij 2
var (T) = – [––     ∑ pij [ln ––– + T ln p.j] ].(11)

N H2(Y)
i, j 

pi.p.j

var (T) can be estimated by var (T) which
is obtained by replacing pij, pi. and p.j

by their empirical estimations p̂ij, p̂i . and
p̂.j.

In the case of information carried by
several covariables, we can measure as
above the combined relative information
of covariables X1, …, Xn on Y. The eval-
uation of the information variance per-
mits to build confidence intervals and
eliminates the less pertinent covariables.

Vocabulary When Y is the survival
variable, Ir (X, Y) is called prognostic
value of X and denoted by Ir (X).

We select progressively the different
covariables using an iterative process.
Let E be the set of covariables X1, …, Xk

considered in the study. The first step
consists of building the set E1 defined
by

E1 = {Xl ∈ E | Ir (Xl, Y)
––––––––––––

+ 	
 √var (Ir (Xl, Y)) � p1}

and at a step h (h �2), we get

Eh = {(Xl, x) ∈ E � Eh–1 | Ir ((Xl, x), Y)
––––––––––––––––

+ 	
 √var (Ir ((Xl, x), Y)) � ph}

where p1, ph and 
 are fixed thres-
holds, and 	
 is such that � (	
) = 1 – ––
2;
� being the cumulative distribution
function of the Gaussian distribution 
N (0,1).
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histology, 11) N histology, 12) number
of positive nodes (number of metastatic
lymph nodes), 13) estradiol receivers,
14) progesterone receivers, 15) UICC
stage.

Computations were programmed in
APL. The first step allowed to select
5 covariables which were: the thermo-
graphic class, the number of positive
nodes, the histology, the N histology
and the UICC stage using the following
thresholds: p1 = 5% and 
 = 5% (cf.
Fig. 3).

The second step confirmed the choice,
in the sense that combinations of these
covariables were selected, with the fol-
lowing thresholds: p2 = 15% and 
 = 5%
(cf. Fig. 4). Nevertheless, at the third
step, the best combination of three co-
variables was the age, the histology and
the number of positive nodes. That is, in
this step age was selected while this
covariable was not selected earlier. This
combination gave about 40% of relative
information on the survival time.

decreased from X to X’. The
decision rule consists of comparing the
information loss with the appropriate
percentile of a chi-squared distribution.

5. Application to Breast Cancer
Survival

To illustrate the theory presented
above, we used data from an investigation
carried out in Marseille by Professor
J.-M. Spitalier and Doctor D. Hans. In
their study, 1304 patients were observed
during 10 years and 45 variables were
recorded for each patient. A treatment
was applied to the different patients
according to the values of the variables.

Fifteen out of 45 variables were
retained after a preliminary data analy-
sis: 1) age, 2) clinic class, 3) thermogra-
phic class, 4) senographic class, 5) echo-
graphic class, 6) clinic PEV, 7) clinic
diameter, 8) clinic behavior, 9) side, 10)

Remarks
1. The thresholds series{ph, h �1} must

be a strictly increasing sequence with
respect to h because the adding of
a covariable necessarily increases the
relative information.

2. The selection process described above
is interesting since at any given step
h, a covariable which has not been
selected at a previous step can be
included in the selection set Eh.
In practice, the stopping criteria are

the following:

i) a maximum number of iterations is
determined by the user,

ii) the user determined a maximum
threshold beyond which he consi-
ders that the relative information is
sufficient,

iii) both i) and ii),
iv) no covariables can be added.

4. Aggregation of Survival Curves

In the case where Y is the survival
variable, the quotient of the number of
patients alive at time t by the number of
uncensored patients just before time t is
called survival rate at time t. The survi-
val curve is the curve of the survival
rates as a function of t. The recovery
rate of a sub-population is the survival
rate at the end of the observation period.

Aggregating survival curves corre-
sponding to different modalities of the
same selected predictor increases the
prediction efficiency if there is no loss
of information due to this aggregation,
and simplifies the prognostic procedure.

The different modalities of a covaria-
ble give a partitioning of the patient
population (cf. examples presented in
Figs. 1 and 2). These modalities are orde-
red with respect to their recovery rates.
If the survival curves of two modalities
are very close, they can be grouped into
a single modality. The method we apply
is based on an entropy conservation
principle presented in [10]: Aggregating
two curves corresponding to two modal-
ities of a covariable, say X, is equivalent
to creating a new variable X’. This so-
called modification of X has a number
of modalities equal to the one of X mi-
nus unity. Then, a statistical test is ap-
plied to confirm if the relative informa-
tion on the survival has not significantly

Fig. 1 Survival
curves for the
covariable Number
of positive nodes.
Column 2 is “No 
invaded ganglion”;
Column 3 is “1 
invaded ganglion”;
Column 4 is “2 inva-
ded ganglions”; 
Column 5 is “3 to 4
invaded ganglions”;
Column 6 “More
than 4 invaded
ganglions”; Column
7 is “Mean survival”.

Fig. 2 Survival
curves for the
covariable Age.
Column 2 is “25 to
44 years”; 
Column 3 is “45 to
51 years”; 
Column 4 is “52 to
59 years”; Column
5 is “60 to 
69 years”; Column
6 is “More than 
70 years”.
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Fig. 3 Relative
information confidence
interval for each
covariable.

Fig. 4 Relative information for two by two combinations between the 15 covariables and respectively V3, V10, V12, V15. V1 is the
covariable Age.
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number of positive nodes and the histo-
logy are closely related to the survival
risk of Cox’s model. The regression 
parameter for age is not significantly
different from zero in this model.

7. Conclusions

We have presented an asymptotic
and nonparametric method for predic-
tor selection which can be applied when
the number of statistical units is large
and when there is no reasonable model
for the observed phenomena. Using this
new entropy-based stepping procedure,
some covariables carrying most of the
information on the variable of interest
Y can be selected. The correlation be-
tween Y and the covariables is quanti-
fied by the relative information of this
set of covariables on Y, that is the pro-
portion of reduction of uncertainty on
Y by knowing the covariables. When
this variable is the survival time after
a disease detection, survival curves
for different modalities of a selected
predictor can be aggregated using an
entropy conservation principle which

the model. The algorithm stops when
the p-value for the improvement chi-
squared statistics is greater than 0.1.
The results of the stepwise procedure
are presented in Table 1. We can see
that 4 out of the 5 selected covariables
are also selected by our method. Table 2
shows the influence of the selected co-
variables on the survival. As for our
method, the number of positive nodes
significantly decreases the probability
of survival. On the other hand, the co-
variable age does not improve the fit of
the logit model at all.

6.2 Cox’s Regression Model

We have also used Cox’s regression
model to estimate the influence of the
four covariables selected by our non-
parametric method and two others
selected by stepwise procedure in the
logistic regression. Thus, the suggested
model contains six unknown para-
meters of interest, each of them associ-
ated with these six covariables. The re-
sults of the estimation procedure are
presented in Table 3. They are similar
to our results since the UICC stage, the

When a covariable has a high prog-
nostic value, it is interesting to be able
to assign a survival curve to the differ-
ent possible values of this covariable
(cf. Figs. 1 and 2). These curves repre-
sent the survival rate conditional to the
value taken by this covariable on a pa-
tient. They are useful tools for medical
prognostics.

The studies which were undertaken
separately from the four covariables
(age, histology, number of positive
nodes and UICC stage) indicate the
modalities which have the best survival
expectation. So, for the covariable num-
ber of positive nodes (cf. Fig. 1), 0, 1 or
2 positive nodes give survival curves
that are near and above the average
survival whereas the modality “3 to 4
positive nodes” is clearly less than aver-
age. The modality “more than 4 positive
nodes” is the less favorable. If the cova-
riable age is taken individually, it car-
ries little information on the survival
variable: this is shown by the entwining
of the survival curves associated with its
modalities (cf. Fig. 2).

6. Comparison with
other Selection Methods

We compared the selection method
presented above with analogous ones
based on the binary logistic regression
model and the semiparametric Cox’s
regression model [1] which are very
popular methods in survival analysis.
All calculations were carried out with
BMDP version PC90. It is worth no-
ticing that, in practice, the true model
is unknown so that a performance com-
parison of different predictor selection
methods can be carried out only
through extensive model simulations.
This problem has not been addressed
here and will be presented in a sub-
sequent paper.

6.1 Binary Logistic Regression

We have applied the binary logistic
regression (dead within 11 years, alive
after 11 years) to the data with the
15 covariables presented in Section 5.
We have chosen the forward stepping
procedure, which means that at the be-
ginning none of the covariables are in

Table 1 Stepwise
(forward) building
up of the logistic
model.

Table 2 Final
results for the
logistic regression
after 5 steps.

Table 3

Cox regression
parameter
estimation.
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implies no significant information loss
after aggregation. The survival predic-
tion is then simplified.

When the proposed method was
applied to patients having breast
cancer, four variables were selected.
A comparison with predictor selection
methods based on the binary logistic
regression and Cox’s regression gave
comparable results. The best predictors
obtained are the number of positive
nodes, the UICC stage, the histology
and the thermographic class. Only our
method selected age in the set of signifi-
cant predictors.

We focused here on the presentation
of the theory and its illustration. Never-
theless, a performance study of this
selection procedure with other methods
is under preparation through extensive
model simulations. The first results ob-
tained show good performance when
the number of observation units is large
and our method compares favourably
with model-based methods when the
model is mispecified (i.e., the known
simulated model is).
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