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Abstract. A generalized definition of entropy for any state on a C* algebra is given 
and studied. We prove that the entropy characterizes uniquely the normal states. 

I. Introduction 

For the algebras of the canonical commutation and anticommuta- 
tion relations the theorem of Dell'Antonio, Doplicher and Ruelle [1-] 
is well-known; it states that normal factor states on the CCR and CAR 
algebras are characterized by the existence of a number operator on the 
representation space induced by the state. Physically it means that the 
states describing a finite number of particles are exactly the normal factor 
states. 

In this work we characterize the normal states (Definition 1) on any 
C*-algebra by an other physical quantity, namely the entropy; for the 
exact formulation see Theorem 1 below. In physical terms, it means 
that the states of finite entropy are exactly the normal states. 

In order to work out the subject we generalize first the motion of 
entropy of a state on a C*-algebra (Definition 2). For normal factor 
states it coincides with the ordinary definition and we prove also that 
it satisfies properties and inequalities analogous to those satisfied by 
the usual entropy. Finally we discuss more in detail the entropy definition 
and give an alternative expression for it (see Definition 3). 

II. Normal States and Total Entropy 

Definition 1. L e t  ~ be a s tate  on a C*-algebra d ,  o) is called normal 

i f  o9 is a convex  linear combinat ion  o f  pure s tates  on d .  

Remark that, if~o is a normal state, then Hm, the GNS representation 
induced by ~, is the direct sum of irreducible representations of ~ ;  
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it is clear that  normal  states are not  necessarily factor states. General ly 
in the physics l i terature a normal  state corresponds in our  terminology 
to a normal  factor state. 

Definition 2. The entropy S(co) of  a state ~o on d is given by 

a) I f  co is a normal state, i.e. co = ~ 2,co,, ~ 2, = 1, 2, > O, and co, 
pure, then " " 

S(co) = i n f ~  - 2, log2,  
8 

the infimum is taken over all possible decompositions o f  co into pure states. 

b) I f  co is not normal, then S(co)= oo. 

For  any state co on d ,  denote  by H~, ~ o ,  f2~, respectively the GNS-  
representation,  representat ion space and cyclic vector induced by e); 
let ~p ~ ~ then co~ is the state on d ,  defined by co~(x)= 0P I/7~o(x)~p), 
x ~ d .  

Proposition 1. The entropy S(co) o f  the state co satisfies: 

i) I f  o is a normal factor  state, i.e. there exists an irreducible representa- 
t ion/7  on a Hilbert space ~ and a density matrix ~ such that 

co(x) = Trje ~ o/-l(x), 
then 

S(co) = - Tr~e Q log~o. 

ii) I f  o) 1 and co2 are states on d ,  and )~ such that 0 <_ 2 <_ 1 then 

2S(coa) + (1 + 2) S(CO2) =< S()mh + (1 - 2) °)2) 

< 2S(co 1) + (1 - 2) S(co2) - 2 log)~ - (1 - 2) log(1 - 2) 

iii) S(co) = 0 if and only if  co is a pure state. 

Proof. See Appendix A and B. 

Theorem 1. Let  co be any state on d ,  then co is a normal state if  and 
only i f  the set 

P = OP ~ ;gfo~llI ~ll = 1, S(c%)< oo} 

is dense in the unit sphere o f  o~o~. 

P r o @  Suppose first that  m is normal,  t h e n / / ~  = @ 17, w h e r e / 7 ,  
n 

are irreducible representations,  ~,~ = @ ~ , .  For  any finite sequence 

(W~)~= 1,...,p with ~p~ ~ ~,,,,, HtpiH = 1, where all n~ are different for different i, 
then p 

co ~ -~ = Z ~icoto~ 22 

p 

for all sets (2i)i= 1,...,p, 2i > O, ~ 2 i = 1. 
i=1 
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As the states c%i are pure, it follows from Definition 2 that: 

S v =< - ~ J'i log2i < o0. 

To prove the converse, suppose a~ is not normal, then H~, is not a direct 
sum of irreducible representations, hence there exists in the commutant 
H~,(d)' at least one projection E which majorizes no minimal projections. 
Let ~p be a unit vector of Eaf, o and Et0 =< E where E~ is the orthogonal 
projection on //~,(ag),p. Then the induced representation H~,IE w is 
the GNS representation for the vector state c%. As Ew majorizes no 
minimal projections,//o, I Et~ is not a direct sum of irreducible representa- 
tions, hence S(ro 0 = Go. 

Let ,peJg~,, II~ll =1,  t h e n  1D=g-~lpl-~- 1l / /~1/)2  where ~pl eEa//°o, , 
[[tPl]l=l, and lp2e,~m@EOrfm, II~p2ll=l. As EEH~(~c) ' :c%=ec%~ 
+ (1 - a) c%~. 

From Proposition 1: 

s(%,)  + (1 - ~) s(%~) =< s(co 0 

and for all vectors ~p such that a 4= O, S(a)~) = oo. This proves that the set 
P is not dense in the unit sphere of d/t~o,. Q.E.D. 

III. Discussion of the Entropy Definition 

In this section we study in more detail the generalized notion of 
entropy given in Definition 2 in order to justify the notion of normal 
states as the states of finite entropy. 

We start with the following notation: let 3 be an abelian yon Neumann 
algebra on a Hilbert space J r ,  f2 a unit vector of J r ,  then denote 

s~(3) = suphn(~) 
~cg  

where ha(g) = - Y, (QIE.t2) log(falE, Q ) and # = (E,),~ I is a sequence 

of two by two orthogonal projections E, of 3 such that ~, E.  = 1. Denote 

by cg the set of such sequences, nee 

Lemma 1. I f  there exists a element ~ of cg such that all E. are minimal 
in 3 then 

sga(3) = hn(~°) • 

Proof. Let G be any projection of 3.  Then 

G=G(,~IE")= ~ 

22* 



330 J. Manuceau,  J. Naudts ,  and  A. Verbeure: 

As all E. are minimal, GE. = 0 or GE. = E. for all n. Hence any projection 
of 3 is a sum of projections E.. Take any 

J=(Fv)v~%°;  let I,={n Zlg, fp=E.}. 
then 

Ipc~Ia=O for p 4 q  and [_)Ip=I. 
P 

Using the monotonicity of the logarithm we get 

ho(•)= - 2 2 (f2lg, f2)log(f2lg,12) 
p n~lp 

> _ ~ ~ (OIE, f2)log(OIFpf2) 
p nelp 

= - ~ (t2t FpO) log(O I FpO) = ho(6~). 
P 

Lemma 2. Suppose that 3 is an abeIian yon Neumann algebra on a 
Hitbert space ~ which contains no minimal projections. Let ~ be a 
separating vector for 3, then: 

a) for any e > 0 and any projection E of 3, there exists a projection F 
in 3, such that IIF~ll < ~ and F ~ E. 

b) Jbr any projection E ~ 3 the set 

ZE = {JlFQJl, F projection of 3, F < E} 

is dense in the interval [0, IIEI2t[ }, 

Proof. a) Take any e > 0 and E projection in 3. Suppose there exists a 
sequence (H,),= 1,2,... of projections in 3 such that 

E> HI > H2>... > H.>=... 

IIH, OII >__5 for all n. 

Then infH~ - H is a projection in 3 such that llnOll _-> e([2], (App. 2)). 

Hence the set of projections {G e 31G < E, [1Gf21I > e} satisfies the con- 
ditions of the lemma of Zorn. Let Gm be the minimal element of this set. 
It cannot be minimal in 3, hence there exists a non trivial projection 
F ~ 3,  F < Gm such that IIFOIt < ~. 

b) Let E be any projection in 3 ;  0, IIE~II ~ )~. It is sufficient to prove 
that for any pair ~, f l :a,  fl~ Z~, c~ < fi, there exists a ~' E Ze such that 
a < ? < ~ .  

Let E~, Ea e 3 be such that 

3 being abelian, Ea(1 - E~) is a projection majorized by E; Ea(1 - E~) * 0 
because otherwise Ep < E~ and fl < e. 
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By a) there exists a projection F e 3 such that 

F < Ea(1 - E.)  

II F a l l  2 <Z f12 -- 52 

and since O is separating for 3 :  

5 = < 5 2 + IIFOII 2 __< II(E~ + F) OIl 2 < / ~ 2 .  

The projection E~ + F < E and the lemma follows. Q.E.D. 

Lemma 3. Let 3 be an abelian yon Neumann algebra on ~ ; O a unit 
vector of  ~ separating for 3.  Suppose that all elements ~ e c¢ contain at 
least one projection E~ which is not minimal, then 

a) 3 contains a projection E such that the 

zE = {IIFOll, V projection in 3,  F <-_ E} 

is dense in [0, IIEOII]. 

b) There exists an 5 e R, 0 < ~ < 1, and for any integer n > 1 a sequence 
(Fp)p= t ..... , of n pairwise orthogonal projections in 3,  such that 

5 C( 
2~- < IrfpOll2 < --~-, p = l ,  2 . . . . .  n. 

"c) s~(3)= oo. 

Proof. a) Let (E~)~ z be the set of all minimal projections of 3,  then 
E = 1 - ~ Ep is a non trivial projection of 3 which majorizes no minimal 

fie1 
projections of 3. Let ~ be the range of E, and 3E the reduced yon Neu- 
mann algebra of 3 on ~ e ;  3e  is abelian and contains no minimal pro- 
jections; the vector EO = f2e is separating for 3E. Applying Lemma 2, 
the set 

{llfOgII IF projection of3~,  F ~ 1} 

is dense in the interval [0, IIOdl]. 
By canonical imbedding of 3g into 3 one obtains the desired result. 

b) Take E as in a), c~ = [IEO[[ 2 and choose any integer n. From a) a 
projection G 1 < E exists such that 

since 

5 5 

2n "~1"'"2 < n 

5 
I[(E- G1)Qlt2 > 5  - - -  > 0 .  

n 
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F u r t h e r m o r e  E -  G1 major izes  no min imal  project ions of  3 .  Applying 
L e m m a  2, the set 

{[[fOil, f project ion in 3 ,  F < E -  G1} 

is dense in the interval  [0, I [ (E -  G1)¢2[[]. Hence  there exists a projec- 
t ion Gz ~ E - G 1 in 3 such tha t  

0 <  ~ < ilO2~?ll z < ...... n " 

Analogous ly  we const ruct  project ions Gp such that  

p-1  
G p < E -  ~ Gk 

k=l 

0 <  2h-n < IlG"allZ< --'n 
One obtains:  

E -  G v >c~ 1 -  > 
q=l = 2n 

for p < n - ½. The  project ion G,_ 1 satisfies the right inequali ty and we m a y  
cons t ruc t  G,. This proves  b). 

c) Take  any integer n > 3, n e N. By b) there exists a sequence 
= (Fp)p= 1. .... of pairwise o r thogona l  project ions satisfying 

< IIFpal[ 2 < 
2n = n 

for some fixed e : 0 < e _<- 1. 
F o r  n > 3 :  

1 
IIFPQIt2 <-- 3-  < --e (p = l ,  ..., n). 

Using the mono ton ic i ty  of  the funct ion x ~ - x l o g x  in the interval  

(0, I / e l :  

- ( O I F p O ) l o g ( f 2 I F p O ) > -  2n log 2n 

for p = 1, .. . ,  n. Hence  

ho(~)  >_- - 5-  log 5-2 
and 

Sup h o ( ~  ) = so(3  ) = o r .  Q.E.D. 

L e m m a  4. Let  3 be an abelian yon Neumann algebra on a Hilbert space 
Jt ~, (2 a unit vector of 2,gf separatin9 for 3.  I f  there exists a sequence 



Entropy and Normal States 333 

g=(E.).ecg(3) such that all projections E,  are minimal in 3 ,  then 
sn(3) = he(g  ) , / f  not, se(3)  = oc. 

Proof. I m m e d i a t e  f rom L e m m a  1 and 3. 

Definition 3. The entropy S' (co) o f  a state co on sJ  is given by 

S'(co) = i~fsn~(3)  

where the infimum is taken over all maximal  abelian yon Neumann algebras 
3 o f  the commutant H~o(~¢)'. 

Each sequence g = (E.). of min imal  project ions in H ~ ( ~ ) '  such that  
E.  = 1 generates  a max imal  abel ian yon N e u m a n n  algebra 3 of Ho(~¢)' 

" E.t-2 
and  a decompos i t ion  of co in pure  states : let Y2. - - -  then 

IIG~][ 

c o =  E ( o l ~ . ~ ) c o e  . 
n 

If  there exists such a sequence then the state co is no rma l  and f rom the 
definitions S'(co)> S(co). If  there exists no such a sequence then by 
L e m m a  4: S'(co) = oe. Hence  in general  

s ' (co)  > s (co)  . ( . )  

L e m m a  5. Let  co be a normal factor  state on d ,  then there exists a 
countable sequence E = (En) n o f  minimal projections En ~ / / ~ ( d ) '  such that 

S(co) = heo~(g ) . 

In particular, S(co) = S'(co). 

Proof. By Propos i t ion  1: S ( c o ) = - T r s e o ¢ l o g ¢  (with the obvious  
notations).  Let  ~o = ~ 2~E~. be the spectral  decompos i t ion  of ¢, (~,) ,  

n 

is an o r t h o n o r m a l  basis of  J~cY o ; then/7~ = @ / 7 0  Jfo, = • ~o,  t2~ = 2 ] / ~ . ~ .  
n n 

is the GNS- t r ip le t  induced by co. Let  E.  be the project ion on the nth-term 
24~ o of the direct sum J/f~, = @ ~ o ,  then g = (E.). is a sequence of min imal  

n 

project ions in Ho~ ( d ) '  such that  he(E ) = - Trjeo Q log ~ hence S(co) = he(E ). 
Q.E.D. 

Proposit ion 2. For any state co on a C*-algebra d : S(co) = S'(co). 

Proof. If  S(co)= oe, the equali ty follows f rom (*). It  is sufficient to 
consider the case that  co is normal .  In this case, there exists a unique 
decompos i t ion  co = ~2pcop of co in disjoint factor  states [33 5.4.9, p. 109. 

P 

R e m a r k  tha t  Ho, = @ Hp, Q~ = ~ ] ~ p  f2p where Fp Q = ~ Op,/Tp = II~olFp, 
P P 
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Fp is a central projection of Ho~(s¢)'. For  any sequence ~ = (En)ne ~ of 
minimal projections E. ~ Fl, o(~¢)', there exists a partition (lp)~, of the index 
set I such that 

E.=  Fp. Then 
n ~ I p  

h~(d°)= - ~ ~ (f2'E,,f2)log(f2[E,,(2) 
p n~Ip 

= - Z Z "~.p(f2,,IE.G)I°g'~.p(GIE.Op) 
p nelp 

= - ~ ~ 2p(f2plE.g2p)log2.--E ~ 2v(f2plE.f2.)l°g(O.IE.f2.) 
p n~Ip p n~Ip 

= - Z 2p log),.p + Z '~,h~,(G) 
P P 

where gp = (E, Fp)n~I,. It  is clear that any choice of g corresponds to a 
choice of sequences gv and vice-versa. Hence 

S'((~) = ~, 2p(S'(cop) - log2,) .  
p 

By Lemma 5: 
S'(co) = E 2p(S(cop)- log2p). 

P 

By Proposit ion B. 1 (Appendix B): 

S'(co)= S(~). Q.E.D. 
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Appendix A 

Here we prove Proposit ion 1 (i): i.e. the equivalence of our definition 
of entropy with the ordinary one for normal  factor states. 

Let ~ be a positive trace-class operator  on a Hilbert space ~ ,  and 
~ '  an infinite separable Hilbert space, p = ~ )., Eo, the spectral decom- 

n 

position of e; (%), (0G),,) an or thonormal  basis of Yf(2,f'); 

n 

Then for all bounded operators A on Yf, denoted by N ' ( ~ )  

Tr~A = (~2] A ® 1 ~2). (A.1) 

Define the projection E. on W ® Yf' by 

E. = 1 ® Eto" . (A.2) 
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The E, are minimal in 1 ® ~(~f ' )  and ~ E, = 1, (QI E, f2)= 2,, and hence 

- Tr ~ log ~ -- - ~ (OLE. O) log(O[E.O). (A.3) 
n 

Let (Fp)p be any sequence of pairwise orthogonal minimal projections 
in 1 ® N(~,uf,) such that ~ Fp = 1. Then F v is of the form Fp = 1 ® tip where 

p 
Hp is minimal projection on ~ ' ;  let (Zp)p be the orthonormal basis 
corresponding to (Hp) v then 

(OlfpQ)= ~)~,,(w.IHpW,,) = ~ & l O p . l z v ) l  2 • 
n n 

By the convexity of the function - x l o g x  for  x > O: 

- ~ ( O l F v O ) l o g ( O I F p O ) >  - ~ 2 , 1 o g 2 . = -  Tr0 log0. (A.4) 
p n 

Now we prove a proposition, which seems to be known: 

Proposition A.1. I f  Qa and Q2 are positive trace-class operators on a 
Hilbert space ~ ,  then: 

- Tr(Q1 + 02) log(Q1 + 02) < - Tr¢l  logQ1 - Tr02 log~2 • 

Proof. Take a Hilbert space Jt °' as above, let 01 and 0 2 be the vectors 
of ~4" ® ~4 ~' such that (see A.1) 

Tr01A = (01 lAG 1 01) 

T r 0 2 A - - - -  ( O 2 [ A ®  1 ~e~2) , A e ~ ( ~ ) .  

Let (E,1), and (E2), be the sequences of minimal projections in 1 ® ~(.~f') 
such that (see A.3): 

- T r e l  l o g e l  = - Y~ (O11~ .  ~ O1) l o 8 ( O 1 1 ~ .  1 ~1 )  
?/ 

-- Tr02 logQ2 = - Z (021EnZO2) 1°8(O21E202) 
n 

Form .~"  = -~'  @ ~ ' ,  then . . . .  ~ f ® ~  = ~ f ® ~  @Yg®Yg and form 
O = O~ ® 02 e ~ ® H " .  Then 

T r ( 0 1 + 0 2 ) A = ( O I A ® I O )  A e ~ ( ~ ) .  

The projections El. andE,  2 are minimalin 1 ® ~ ( ~ ' ) a n d 2 ( E .  ~ + E .  ~) = 1 . , , .  

By (1.4) 

- Z (OIE. ~ 0) log(Ol E~ 0) - Z (OIE~ 0) log(Of E. 2 0) 
n n 

=> - T r ( 0 1  + 02) log(q, + Q2).  
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But (f2IE~ f2) = (~1 l En 1 ~'21), (~r~[ E2 ~c~) = (~Q2 IE  2 ~'~2)" H e n c e  the result. 
Q.E.D. 

Proposition A.2. Let co be a normal factor state on d ,  then 

S(co) = - T r a v o  log0.  

Proof. As co is normal, co = ~ #.co. where co. are pure states; co. 
rl 

induces the GNS-triplet (//., ~ . , ,  O.); as co is a factor state, all H. are 
equivalent, H -=//. for all n. Let (E,). be the set of one dimensional pro- 
jections on ~ such that 

then 
co.(A) = TraeE. H(A),  

co(A) = Tr0/ / (A)  

A ~ d  

where ~ = ~ # .E .  is the unique density matrix induced by co. From 

Proposition A.1 : 

- Tr0 log0 < - Tr(/z.E.) log(#.E.) = - Z/z. log#. .  

This is true for any decomposition of co, hence: 

- Tr0 log0 < S(co). 

To prove the contrary inequality, let 0 = ~ 2. E~,. be the spectral decom- 

position of the density matrix Q, then also co= ~2.co~.  and 
n 

S(co) < - ~ 2,, log2. = ........ Tr0  log0, hence the result. Q.E.D. 

Appendix B 

We prove Proposition 1 ii), iii), i.e. we prove that our generalized 
definition of entropy satisfies the same kind of inequalities as the ordinary 
definition of entropy for a factor state. 

Proposition B.1. Let (co,), be a countable sequence of normal states 
on d ,  co = ~ 2.o9. a convex combination of the co.(0 < 2. < 1 , ~ 2 . =  1) 

n - - -  - -  

then 
S(co) =< ~ 2.[S(co.) - to82.] .  

n 

The equality sign holds if the states co. induce factor representations two 
by two disjoint. 
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Proof. Let % = ~ 2~o9 v be a decomposition of co, in pure states, then 
P 

o9 = Z ~2.2~,co~ is a decomposition of co in pure states, hence o9 is 
n p 

normal and 

Since the decomposition of the co, is arbitrary 

S(og) < Z 2,[S(o9,) - lo82,].  
n 

If the states co. induce factor representations two by two disjoint, then 
co = ~ 2,co. is a unique decomposition in this sense. It follows that all 

n 

decompositions of co in pure states are obtained by all decompositions of 
the co. in pure states, and the equality holds. Q.E.D. 

Proposition B.2. Let  coa and co2 be normal states, and 09=2o91 
+ (1 - 2) co2 where 0 <_ 2 < 1, then 

, s(col) + (1 - 2) s(o92) _-< s(co) .  

Proof. Let co¢ y, i i • = 2pcop, z = 1, 2, be the decomposition of col and °)2 
p~Ii 

into disjoint factor states; 

K is the set of indices p ~ 11 such that the representations H~o~ are 
disjoint from all subrepresentations of o92; 

L is the set of indices p E 11 such that H~b is quasi-equivalent with 
some subrepresentation Ho,~, induced by ogz; 

M is the set of indices p e/2 such that Ho~g is disjoint from all sub- 
representations induced by o)2- 

Then 

co Z 1 1 22pcop"~- Z ( 1 - -  2 2 

p~K peM peL 

where 

1 
= -- 4) 2., 2co,,], p 6 L cop,, 22pt + ( 1 - 2 )  22 [22v~ cop1 + (1 2 e 

np 

is the unique decomposition of co in disjoint factor states. 
From Proposition B.1 

S(co)= ~,, 22~[S(c@1-Iog22~] + Z (i -2)2~[S(o9~)-log(1-2)2v z] 
peK p~M 

+ Z (22~ + (1 - 4) 42) [S(ogp,.,) - log(22v ~ + (1 - 2) 2.~)]. 
peL 
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1 and  co~p are  quasi-equivalent  factor  states (see [4] p. 27) As the states cop 

1 
S (%, , , )  __> 22~' + (1 - 2) 22 [2 2~ S(col) + (1 - 2) 2, ~, S(co,~ )] 

np 
and 

S ( c o ) ~ 4  ~ 1 1 ~ ~ 2 ).p [S(cop) - log4p]  + (1 - 2) ~ 4p [S(cop) - log4~] .  

Using propos i t ion  B.1 

S ( c o ) > 4 S ( c o 0 + ( 1 - 2 )  S(coz). Q.E.D. 

Proposit ion B.3. S(co) = 0 / f  and only  i f  co is a pure state.  

Proof .  Follows immedia te ly  f rom the definition of S(co) and f rom 
Propos i t ion  B.1. Q.E.D. 
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